Prove that $\cos\left({\pi \over 11}\right)\cdot\cos\left({2\pi \over 11}\right)\cdot\cos\left({3\pi \over 11}\right)\cdot\cos\left({4\pi \over 11}\right)\cdot\cos\left({5\pi \over 11}\right)={1 \over 32}$
My solution starts here LHS $= \cos\left({\pi \over 11}\right)\cdot\cos\left({2\pi \over 11}\right)\cdot\cos\left({3\pi \over 11}\right)\cdot\cos\left(2\pi-{3\pi \over 11}\right)$
Then I changed the last expression to $\sin {3\pi \over 11}$ but Now what to do next?