$\lim_{x \rightarrow 0^+} x^{\frac{1}{x}}$
My workout:
Let $y$ be the answer to the limit.
\begin{align}y = \lim_{x \rightarrow 0^+} x^{\frac{1}{x}}&\implies \ln\ y = \lim_{x \rightarrow 0^+} \ln\ x^{\frac{1}{x}}\\&\implies\ln\ y = \lim_{x \rightarrow 0^+} \frac{1}{x} \ln\ x \\&\implies\ln\ y = \lim_{x \rightarrow 0^+} \frac{\ln\ x}{x}\end{align} and by L'Hopital's Rule:
$$\ln\ y = \lim_{x \rightarrow 0^+} \frac{1}{x} \implies y = e^{\lim_{x \rightarrow 0^+} \frac{1}{x}}$$
Therefore: $y = e^{\infty} = \infty$. Correct Answer: $0$
What is wrong with my answer? And why is the answer $0$?