It occurred to me that your problem has to do with a creation and
annihilation operator, according to
\begin{eqnarray*}
X &=&U+V \\
a^{\ast } &=&V,\;a=U
\end{eqnarray*}
see below.
Let $\mathcal{H}=l^{2}$ \ with elements $u=u_{1},u_{2},\cdots $ and
let $K$ be defined by
\begin{eqnarray*}
\mathcal{D}(K) &=&\mathcal{D},\;\mathcal{D}=\{u\in l^{2}|\sum_{j=0}^{\infty
}j|u_{j}|^{2}<\infty \} \\
(Ku)_{j} &=&\sqrt{j}u_{j},\;u\in \mathcal{D}
\end{eqnarray*}
$K$ is symmetric, non-negative on $\mathcal{D}$ and its null space consists
of the elements $(u_{0},0,0,\cdots )$. In fact it is self-adjoint on $%
\mathcal{D}$ according to
\begin{eqnarray*}
(Ku,v) &=&(u,f) \\
\sum_{j=0}^{\infty }\sqrt{j}u_{j}\bar{v}_{j} &=&\sum_{j=1}^{\infty }\sqrt{j}%
u_{j}\bar{v}_{j}=\sum_{j=0}^{\infty }u_{j}\bar{f}_{j}\Rightarrow f_{j}=\sqrt{%
j}\bar{v}_{j},\;j\neq 0 \\
j &=&0\Rightarrow 0=(u_{0},f_{0})\Rightarrow f_{0}=0
\end{eqnarray*}
We introduce the scale of spaces
\begin{equation*}
\mathcal{H}_{k}=[K+i]^{-k}\mathcal{H}
\end{equation*}
As a set $\mathcal{H}_{k}$ is dense in $\mathcal{H}$ and is itself a Hilbert
space under the norm (or an equivalent one)
\begin{equation*}
\parallel f\parallel _{k}=\parallel Kf\parallel _{\mathcal{H}},\;f\in
\mathcal{H}_{k}.
\end{equation*}
Thus $\mathcal{H}=\mathcal{H}_{0}$, $\mathcal{D=H}_{1}$. For $u\in \mathcal{D%
}$ the operator $X$ is given by
\begin{eqnarray*}
(Xu)_{j} &=&\sqrt{j+1}u_{j+1}+\sqrt{j}u_{j-1}=(Uu)_{j}+(Vu)_{j},\;j>0,
\;(Xu)_{j}=u_{1} \\
(Uu)_{j} &=&\sqrt{j+1}u_{j+1},\;(Vu)_{j}=\sqrt{j}u_{j-1},\;j>0,
\;(Uu)_{0}=u_{1},\;(Vu)_{0}=0
\end{eqnarray*}
$X$, $U$ and $V$ are bounded operators from $\mathcal{H}_{1}$ onto $\mathcal{
H}$. Next we note that $V=U^{\ast }.$ We note that for $u,v\in \mathcal{D}$
\begin{equation*}
(Uu,v)=\sum_{j=0}^{\infty }\sqrt{j+1}u_{j+1}\bar{v}_{j}=\sum_{j=1}^{\infty
}u_{j}\sqrt{j}\bar{v}_{j-1}=(u,Vv)
\end{equation*}
so $U^{\ast }\subset V$. Let now
\begin{eqnarray*}
(Uu,f) &=&(u,g) \\
\sum_{j=0}^{\infty }\sqrt{j+1}u_{j+1}\bar{f}_{j} &=&\sum_{j=0}^{\infty }u_{j}
\bar{g}_{j} \\
\sum_{j=1}^{\infty }u_{j}\sqrt{j}\bar{f}_{j-1} &=&\sum_{j=0}^{\infty }u_{j}
\bar{g}_{j}
\end{eqnarray*}
Choosing a specific $u$ we find
\begin{eqnarray*}
g_{0} &=&0 \\
g_{j} &=&\sqrt{j}\bar{f}_{j-1},\;j>0
\end{eqnarray*}
so $U^{\ast }=V$.
For $u\in \mathcal{H}_{2}=[K+i]^{-2}\mathcal{H}$, denoting $u=[K+i]^{-2}f$
\begin{eqnarray*}
(U^{\ast }Uu)_{j} &=&(U^{\ast }U[K+i]^{-2}f)_{j}=\sqrt{j}
(U[K+i]^{-2}f)_{j-1}=j([K+i]^{-2}f)_{j}=(K^{2}[K+i]^{-2}f)_{j},\;j\neq 0 \\
(U^{\ast }Uu)_{0} &=&0=(K^{2}[K+i]^{-2}f)_{0} \\
(UU^{\ast }u)_{j} &=&(UU^{\ast }[K+i]^{-2}f)_{j}=\sqrt{j+1}(U^{\ast
}[K+i]^{-2}f)_{j+1}=(j+1)([K+i]^{-2}f)_{j}=((K^{2}+1)[K+i]^{-2}f)_{j} \\
(UU^{\ast }\varphi )_{0} &=&(UU^{\ast }[K+i]^{-2}f)_{0}=(U^{\ast
}[K+i]^{-2}f)_{1}=([K+i]^{-2}f)_{0}\neq 0 \\
\{UU^{\ast }-U^{\ast }U\}\varphi &=&\{UU^{\ast }-U^{\ast
}U\}[K+i]^{-2}f=[K+i]^{-2}f \\
UU^{\ast }-U^{\ast }U &=&[U,U^{\ast }]==1\;\mathrm{on}\;\mathcal{H}_{2}\;
\mathrm{extends\;to\;}\mathcal{H}
\end{eqnarray*}
Recall that creation and annihilation operators satisfy
\begin{equation*}
\lbrack a,a^{\ast }]=1
\end{equation*}
so we can identify
\begin{equation*}
a=U,\;a^{\ast }=U^{\ast }=V
\end{equation*}
Then $K^{2}=U^{\ast }U$ is the number operator.