Let $p,q$ be primes such that $p$ is a divisor of $|\text{SL}_2(q)|=(q-1)q(q+1)$. Hence $\text{SL}_2(q)$ admits non-trivial Sylow subgroups. I am interested in the isomorphism type of the $p$-Sylow. From what I understand, if $p<q$ are odd primes, then a $p$-Sylow subgroup of $\text{SL}_2(q)$ is cyclic.
However, in the case $p=2$ or $p=q$, I am not sure.
I tried to use Suzuki paper(http://www.jstor.org/stable/2372591?seq=1#page_scan_tab_contents), but it is rather complicated and I hoped there is an easier approach.
Thanks in advance for any help.