Denote the number of groups of order $n$ by $gnu(n)$.
A natural number $n\ge 1$ is called group-abundant, if $gnu(n)>n$, group-perfect, if $gnu(n)=n$ and group-deficient, if $gnu(n)<n$.
I wonder, which prime powers $p^k$ ($p$ prime , $k\ge 1$) are group-abundant, group-perfect and group-deficient.
I could solve the case $k\le 7$ completely using the higman's PORC-functions.
The only group-abundant prime powers $p^k$ with $k\le 7$ are $2^5,2^6,2^7$ and $3^7$, all the other prime powers are group-deficient (there are no group-perfect prime powers for $k\le 7$):
The numbers $2^8$ and $3^8$ are group-abundant as well as $2^9,2^{10}$ and $2^{11}$.
Is it known whether all prime powers $p^k$ with $k\ge 8$ are group-abundant ?