Using the operators $$+,-,\div,\times,\exp,(,),!$$ what is the least $n$ to come up with the number $2016$ using the sequence of numbers $1,2,3,\ldots,n$ in that order. You cannot combine numbers, so you cannot do $2~~3=23$ and you cannot negate values.
My solution consists of $10$ numbers. I want to see if someone can come up with the least use of operators in their answer.
Good luck! If no one is able to get less than $10$ numbers, I will post my answer.