If $x<y<z$ are real numbers, prove that $$(x-y)^3+(y-z)^3+(z-x)^3 > 0.$$
Attempt
We have that $(x-y)^3+(y-z)^3+(z-x)^3=-3 x^2 y+3 x^2 z+3 x y^2-3 x z^2-3 y^2 z+3 y z^2$. Grouping yields $3(x^2z+xy^2+yz^2)-3(x^2y+xz^2+y^2z)$. Then I was thinking of using rearrangement but then I would get $\geq$ instead of $>$.