Here is a modified version of proof which I saw in Alan Bakers Book Comprehensive course in Number Theory. In this I have used the prime number theorem but this can be done without it as well as done in the book I mentioned above.
The Prime Number Theorem states that $$\pi (x) = \frac{x}{\log x}+O(\frac{x}{(\log x)^2})$$
First notice that evaluating $\sum\limits_{p \leq x} \ln(1-\frac{1}{p})$ is enough since one has to just take its exponential to obtain
the required estimate i.e $\displaystyle\prod \limits_{p \leq x} (\frac{p-1}{p})=\frac{ce^A}{\ln x}$
Mertens Result
$\displaystyle \sum\limits_{p \leq x} \ln(1-\frac{1}{p})= A+\ln(\frac{1}{\ln x})+\ln(c+O(\frac{1}{\ln x}))$
Proof:
We observe that
$\displaystyle \sum\limits_{p \leq x} \ln(1-\frac{1}{p})=\sum \limits_{p \leq x} \sum \limits_{m=1}^{\infty} -\frac{1}{mp^m}$
$$\displaystyle \sum \limits_{p \leq x} \sum \limits_{m=1}^{\infty} -\frac{1}{mp^m}=\sum \limits_{p \leq x} \sum \limits_{m=1}^{1} -\frac{1}{mp^m}+\sum \limits_{p \leq x} \sum \limits_{m=2}^{\infty} -\frac{1}{mp^m}$$
But $\displaystyle \sum \limits_{m=2}^{\infty} \frac{1}{mp^m}=O(\frac{1}{p^2})$ this implies that
$$\displaystyle \sum \limits_{p \leq x} \sum \limits_{m=1}^{\infty} -\frac{1}{mp^m}=-\sum \limits_{p \leq x} \frac{1}{p}+\sum \limits_{p} (\ln(1-\frac{1}{p})+\frac{1}{p})-\sum \limits_{p>x} (\ln(1-\frac{1}{p})+\frac{1}{p})$$
$$\displaystyle \sum \limits_{p \leq x} \sum \limits_{m=1}^{\infty} -\frac{1}{mp^m}=-\sum \limits_{p \leq x} \frac{1}{p}+c+O(\sum \limits_{p>x} \frac{1}{p^2})$$
$$\hspace{24mm}=-\sum \limits_{p \leq x} \frac{1}{p}+c+O(\sum \limits_{p>x} \frac{1}{p^2})$$
$$\hspace{18mm}=-\sum \limits_{p \leq x} \frac{1}{p}+c_1+O(\frac{1}{x})$$
Now we will try to estimate the sum $-\sum \frac{1}{p}$
Here I have proved it asssuming the Prime Number Theorem
$\displaystyle \sum\limits_{n \leq x} a_n f(n)=s(x)f(x) - \int\limits_{1}^{x} s(u)f'(u)du$. Now taking $a_n=1$ if $n$ is a prime and $0$ otherwise and taking $f(x)=\frac{1}{x}$ we obtain
$$\displaystyle\sum \limits_{p \leq x} \frac{1}{p}= \frac{\pi(x)}{x}+\int \limits_{1}^{x}\frac{\pi(u)}{u^2} du$$
From this after integrating we obtain
$$\displaystyle\sum\limits_{p} \frac{1}{p}=\ln \ln x +c_2 + O(\frac{1}{\ln x})$$
Hence Proved.
\prod_{p \textrm{ prime}} \frac{p - 1}{p}.– Bob Happ Dec 29 '15 at 21:46