Notice, let $\sqrt{\tan x}=u\implies \frac{\sec^2x}{2\sqrt{\tan x}}\ dx=du$ or $dx=\frac{2u}{1+u^4}\ du$
$$\int \sqrt{\tan x}\ dx=\int u\frac{2u}{1+u^4}\ du$$
$$=\int \frac{2}{u^2+\frac{1}{u^2}}\ du$$
$$=\int \frac{\left(1+\frac{1}{u^2}\right)+\left(1-\frac{1}{u^2}\right)}{u^2+\frac{1}{u^2}}\ du$$
$$=\int \frac{\left(1+\frac{1}{u^2}\right)}{\left(u-\frac{1}{u}\right)^2+2}\ du+\int \frac{\left(1-\frac{1}{u^2}\right)}{\left(u+\frac{1}{u}\right)^2-2}\ du$$
$$=\int \frac{d\left(u-\frac{1}{u}\right)}{\left(u-\frac{1}{u}\right)^2+(\sqrt2)^2}+\int \frac{d\left(u+\frac{1}{u}\right)}{\left(u+\frac{1}{u}\right)^2-(\sqrt2)^2}$$
$$=\frac{1}{\sqrt 2}\tan^{-1}\left(\frac{u-\frac{1}{u}}{\sqrt 2}\right)+\frac{1}{2\sqrt 2}\ln\left|\frac{u+\frac{1}{u}-\sqrt 2}{u+\frac{1}{u}+\sqrt 2}\right|+c$$