Given random variables $Y_1, Y_2, \ldots \stackrel{iid}{\sim} P(Y_i = 1) = p = 1 - q = 1 - P(Y_i = -1)$ where $p > q$ in a filtered probability space $(\Omega, \mathscr F, \{\mathscr F_n\}_{n \in \mathbb N}, \mathbb P)$ where $\mathscr F_n = \mathscr F_n^Y$,
define $X = (X_n)_{n \ge 0}$ where $X_n = a + \sum_{i=1}^{n} Y_i$ where $0 < a$.
It can be shown that the stochastic process $M = (M_n)_{n \ge 0}$ where $M_n = X_n - n(p-q)$ is a $(\{\mathscr F_n\}_{n \in \mathbb N}, \mathbb P)$-martingale.
Let $b > a$ be a positive integer and $T:= \inf\{n: X_n = 0 \ or \ X_n = b\}$.
It can be shown that $T$ is a $\{\mathscr F_n\}_{n \in \mathbb N}$-stopping time.
Show that $\exists N \in \mathbb N, \epsilon > 0$ s.t. $\forall n \in \mathbb N$,
$$P(T \le n + N \mid \mathscr F_n) > \epsilon \ a.s.$$
What I tried:
By using induction on n, we have for the base case:
Suppose $P(T \le N) > \epsilon$. Show that $P(T \le N+1 | \mathscr F_1) > \epsilon$.
I tried considering $P(T \le N+1 | \mathscr F_1)$ and then hopefully I could use the assumption somewhere:
$$P(T \le N+1 | \mathscr F_1) = E[1_{T \le N+1} | \mathscr F_1]$$
$$= E[1_{T \le N} 1_{T = N+1} | \mathscr F_1]$$
$$= E[E[1_{T \le N} 1_{T = N+1} | \mathscr F_N] | \mathscr F_1]$$
$$= E[1_{T \le N} E[ 1_{T = N+1} | \mathscr F_N] | \mathscr F_1]$$
Now what is $E[ 1_{T = N+1} | \mathscr F_N]$ exactly?
Well, up to time N we have already hit $X_n = b$, or we haven't. If we have, then $E[ 1_{T = N+1} | \mathscr F_N] = 0$. Otherwise, $E[ 1_{T = N+1} | \mathscr F_N] = p1_{X_{N} = b-1}$. Continuing:
$$= E[1_{T \le N} p1_{X_{N} = b-1} | \mathscr F_1]$$
$$= pE[1_{T \le N} 1_{X_{N} = b-1} | \mathscr F_1]$$
$$= pE[1_{T \le N-1} 1_{X_{N} = b-1} | \mathscr F_1]$$
Similarly, I got
$$= p^2 E[1_{T \le N-2} 1_{X_{N-1} = b-2} | \mathscr F_1]$$
$$= p^2 E[1_{T \le N-2} E[1_{X_{N-1} = b-2} | \mathscr F_{n-2}] | \mathscr F_1]$$
However, I'm not quite sure that
$$E[1_{X_{N-1} = b-2} | \mathscr F_{n-2}] = p1_{X_{N-2} = b-3}$$
I think we have that
$$E[1_{X_{N-1} = b-2} | \mathscr F_{n-2}] = p1_{X_{N-2} = b-3} + q1_{X_{N-2} = b-1}$$
Um, am I on the right track? Did I make a mistake somewhere?