Using Residue Theorem find $\displaystyle \int_0^{2\pi} \frac{1}{a^2\cos^2 t+b^2 \sin^2 t} dt \;; a,b>0$.
My Try:
So, I am going to use the ellipse $\Gamma = \{a\cos t+i b \sin t: 0\leq t\leq 2\pi\}$.
On $\Gamma$, $z=a\cos t+i b \sin t$, so $|z|^2=z\bar{z}=a^2\cos^2 t+b^2 \sin^2 t$.
Now, $dz=-a\sin t+i b \cos t dt$.
Hence, the integral becomes $\displaystyle \int_\Gamma \frac{dz}{z(iab+(\sin t \cos t)(b^2-a^2))}$. I know that $\displaystyle \int_\Gamma \frac{dz}{z}=2\pi i$. Now, how do I get rid of $\sin t \cos t$ part? I am stuck here. Can somebody please explain how?