For every $u\in \mathbb{R}^n$, $\textbf{Card}(u)=q$ implies ${\lVert u \rVert}_1 \leq \sqrt{q} {\lVert u \rVert}_2$
where $\textbf{Card}(u)$ is the number of non-zero element (so the L0-norm).
Why does the condition ${\lVert u \rVert}_1 \leq \sqrt{q} {\lVert u \rVert}_2$ hold? Is there any place I can find proof for this?