First Method
$1)$ We make subtitution $x = \sin (u)$ and conclude that
$$I = \int _0^{{\pi \over 2}}{{\cos \left( u \right)} \over {\sin \left( u \right) + \cos \left( u \right)}}\;du\tag{1}$$
$2)$ Next, we use this substitution $u=\pi / 2 - v$ to get
$$I=\int _0^{{\pi \over 2}}{{\sin \left( v \right)} \over {\cos \left( v \right) + \sin \left( v \right)}}\;dv\tag{2}$$
$3)$ Sum the previous results
$$2I = \int_0^{{\pi \over 2}} {{{\sin (u) + \cos \left( u \right)} \over {\sin \left( u \right) + \cos \left( u \right)}}du} = \int_0^{{\pi \over 2}} {1du} = {\pi \over 2}\,\,\,\,\, \to \,\,\,\,I = {\pi \over 4}\tag{3}$$
Second Method
$1)$ Use the tangent half angle substitution, $u={\tan(\frac{v}{2})}$, in equation $(1)$ to get
$$I=\int _0^\infty {1 \over {\left( {{v^2} + 1} \right)\left( {v + 1}
\right)}}\;dv\tag{4}$$
$2)$ Use partial fraction to decompose the integrand and finally
$$\eqalign{
& I = {1 \over 2}\int_0^\infty {\left( {{1 \over {v + 1}} + {{ - v} \over {{v^2} + 1}} + {1 \over {{v^2} + 1}}} \right)dv} \cr
& \,\,\, = \left. {{1 \over 2}\left( {\ln (v + 1) - {1 \over 2}\ln ({v^2} + 1) + \arctan (v)} \right)} \right|_0^\infty \cr
& \,\,\, = \mathop {\lim }\limits_{v \to \infty } {1 \over 2}\left( {\ln (v + 1) - {1 \over 2}\ln ({v^2} + 1) + \arctan (v)} \right) = {\pi \over 4} \cr} \tag{5}$$