Let $I[x]$ be subset of $\mathbb{Z}[x]$ where $I[x]$ is the set of polynomials with constant term is even.
Show $I[x]$ is an Ideal of $\mathbb{Z}[x]$
Def of $I[x]$ Ideal of $\mathbb{Z}[x]$ that is $I \subset \mathbb{Z}[x]$
where
$$ \begin{align*}
&i)\forall a,b \in I[x]\Rightarrow a-b \in I[x] \\
&ii)\forall r \in Z[x], \forall i \in I[x]:ri \in I[x] \wedge ir \in I[x] \
\end{align*} $$
[Showing i)]
Assume $a\in I[x], b \in I[x]$ that is
$$ a=a_nx^n+\dots+a_0 \text{ and } b=b_nx^n+\dots+b_0$$
Now, $a-b=\dots+(a_0-b_0)$ is even since $\exists k_1,k_2 \in Z:a_0=k_1*2,b_0=k_2*2$.
That is $$\begin{aligned} a-b=&\dots+(a_0-b_0)
\\=&\dots+2k_1-2k_2\\
=&\dots+2(k_1-k_2)
\\=&\dots+2(k_3) && \text{ where } k_1-k_2=k_3 \end{aligned}$$
So, a-b has an even constant.
[Showing ii)]
Assuming $a\in Z[x],b\in \mathbb{Z}[x]$ where $$ a*b=\dots +a_0b_0$$ $b_0$ is even and $a_0$ is even or odd. Either way even times even is even and even times odd is even. So $ab \in I$
appreciate critique on the work, or some weird way of answering the question