How should I integrate $\int _{ 0 }^{ \frac{1}{\sqrt{3}} } \frac { dx }{ (1+x^2)\sqrt{1-x^2}\ } $ ?
I tried substituting $x=1/t$,but it is not working.Could someone help?Thanks.
How should I integrate $\int _{ 0 }^{ \frac{1}{\sqrt{3}} } \frac { dx }{ (1+x^2)\sqrt{1-x^2}\ } $ ?
I tried substituting $x=1/t$,but it is not working.Could someone help?Thanks.
Let $x=\sin \theta$ and then \begin{eqnarray} \int _{ 0 }^{ \frac{1}{\sqrt{3}} } \frac { dx }{ (1+x^2)\sqrt{1-x^2}\ }&=&\int _{ 0 }^{ \arcsin\frac{1}{\sqrt{3}} } \frac {d\theta }{1+\sin^2\theta}\\ &=&\frac{1}{\sqrt 2}\arctan(\sqrt{2}\tan\theta)\bigg|_{ 0 }^{\arcsin\frac{1}{\sqrt{3}}}\\ &=&\frac{1}{\sqrt 2}\arctan(\sqrt{2}\cdot\frac{1}{\sqrt2})\\ &=&\frac{\pi}{4\sqrt 2}. \end{eqnarray} Here $\arctan(\arcsin\frac{1}{\sqrt{3}})=\frac{1}{\sqrt2}$ and $$ \int\frac{1}{1+\sin^2\theta}d\theta=\int\frac{1}{1+2\tan^2\theta}d\tan\theta=\frac{1}{\sqrt2}\arctan(\sqrt2\tan\theta)+c.$$