5

Suppose $X \geq 0$ and $Y \geq 0$ are random variables and that $p\geq 0$

  1. Prove $$E((X+Y)^p)\leq 2^p (E(X^p)+E(Y^p))$$

    Proof

Since $(X+Y)^p \leq (2 \> \max\{X,Y\})^p=2^p \> \max \{X^p,Y^p\}\leq 2^p(X^p+Y^p)$ $ \implies E((X+Y)^p)\leq 2^p (E(X^p)+E(Y^p))$

  1. If $p>1$ the factor $2^p$ may be replaced by $2^{p-1}$
  2. If $0 \leq p \leq 1$ the factor $2^p$ can be replaced by $1$

Need help with part 2 and 3 any suggestions

Josh
  • 536
  • 3
  • 15
  • How would you define the convex function. Im not seeing it @A.S. – Josh Nov 17 '15 at 04:23
  • 3
  • $f(x)=x^p$. Take $2^p$ over to the left to get $((X+Y)/2)^p$ to better see this.
  • – A.S. Nov 17 '15 at 04:26
  • @Josh if you figure it out please post. I am interested – Boby Nov 17 '15 at 04:37