2

Please, help me to find limit of this sequence:
$\lim_{n\to \infty} \left(\frac{n^2 + n}{n^2 + n + 2}\right)^n$

Did
  • 284,245
Parket
  • 231

4 Answers4

2

We have $$ \bigg( \frac{n^{2}+n}{n^{2}+n+2} \bigg)^{n} = \bigg( 1 + \frac{2}{n^{2}+n} \bigg)^{-n} = \exp \bigg[ -n \log \bigg( 1 + \frac{2}{n^{2}+n}\bigg) \bigg] = \exp \bigg( \frac{-2}{n+1} - \frac{2}{n+1}o(1) \bigg) \to e^{0} = 1 $$ as $n \to \infty$.

Yes
  • 20,910
2

Hint. Notice that: $$\forall n\in\mathbb{N},\frac{n^2+n}{n^2+n+2}=1-\frac{2}{n^2+n+2}.$$ And now, remind that: $$\forall n\in\mathbb{N},\left(\frac{n^2+n}{n^2+n+2}\right)^n=\exp\left[n\ln\left(\frac{n^2+n}{n^2+n+2}\right)\right].$$

C. Falcon
  • 19,553
0

$$\lim_{n\to\infty}\left(\frac{n^2+n}{n^2+n+2}\right)^n=$$ $$\lim_{n\to\infty}\exp\left(\ln\left(\left(\frac{n^2+n}{n^2+n+2}\right)^n\right)\right)=$$ $$\lim_{n\to\infty}\exp\left(n\ln\left(\frac{n^2+n}{n^2+n+2}\right)\right)=$$ $$\exp\left(\lim_{n\to\infty}n\ln\left(\frac{n^2+n}{n^2+n+2}\right)\right)=$$ $$\exp\left(\lim_{n\to\infty}\frac{\ln\left(\frac{n^2+n}{n^2+n+2}\right)}{\frac{1}{n}}\right)=$$ $$\exp\left(\lim_{n\to\infty}\frac{\frac{\text{d}}{\text{d}n}\left(\ln\left(\frac{n^2+n}{n^2+n+2}\right)\right)}{\frac{\text{d}}{\text{d}n}\left(\frac{1}{n}\right)}\right)=$$ $$\exp\left(\lim_{n\to\infty}-\frac{2n(2n+1)}{(n+1)(n^2+n+2)}\right)=$$


Since $-2n(2n+1)$ grows asymptotically slower than $(n+1)(n^2+n+2)$ as $n$ approaches $\infty$:


$$\exp\left(0\right)=e^0=1$$

Jan Eerland
  • 29,457
0

Write the expression as

$$\left [ \left ( 1 + \frac{2}{n^2 +n}\right)^{(n^2+n)/2} \right ]^{(2n)/(n^2+n)}.$$

As $n \to \infty,$ the term inside the brackets $\to e,$ and the outer exponent $\to 0.$ The limit is therefore $e^0 = 1.$

zhw.
  • 107,943