Let $1111111111111111 \equiv k \pmod {17}$.
Then $9999999999999999 \equiv 9k\pmod {17}$
And $10000000000000000 =10^{16} \equiv 9k + 1\pmod {17}$.
ANd but Fermat's little theorem:
$9k + 1 \equiv 10^{16} \equiv 1 \pmod{17}$
so $9k \equiv 0 \pmod 17$.
Not $2\cdot 9 = 18 \equiv 1 \pmod {19}$ so $9^{-1} \equiv 2 \pmod {17}$ and we may do:
So $2\cdot 9k \equiv 2\cdot 0 \pmod {17}$
$k \equiv 0 \pmod 7$.
So $1111111111111111 \equiv 0 \pmod {17}$ and we are done. $17$ divides $1111111111111111$
Meanwhile if $11111111\equiv m \pmod{17}$ then
$99999999 \equiv 9m\pmod {17}$
$10^8 \equiv 9m + 1 \pmod {17}$.
And be successive squaring $10^2 \equiv 100=6*17-2\equiv -2 \pmod {17}$. $10^4\equiv (-2)^2\equiv 4\pmod{17}$ and $10^8 \equiv 4^2 =16\equiv -1 \pmod {17}$.
SO $9m + 1 \equiv -1\pmod{17}$
$9m \equiv -2 \pmod {17}$
$m\equiv 2\cdot 9m \equiv -2\cdot 2 \equiv -4 \equiv 13 \pmod {17}$.
And we are done $17$ does not divide $11111111$ and, indeed, we will have a remainder of $13$ if we attempt to.
$11111098= 653594\times 17$ and $11111111=653594\times 17 + 13$.