I am trying to find the dual function $g(\lambda, \nu)$ to this problem
$$\min\limits_{Ax = b} \|x\|$$
Step 1. Form the Lagrangian
$$L(x, \lambda, \nu) = \|x\| + \nu^T(Ax-b) = \|x\| + \nu^TAx - \nu^Tb$$
Step 2. Take the inf over all $x$ to get $g(\lambda, \nu)$
$g(\lambda, \nu)$ = $\inf\limits_x (\|x\| + \nu^TAx - \nu^Tb)$
Then by property of $\inf$, we have:
$\inf\limits_x (\|x\| + \nu^TAx - \nu^Tb) = \inf\limits_x \|x\| + \inf\limits_x \nu^TAx - \inf\limits_x \nu^Tb$
Notice:
$- \inf\limits_x \nu^Tb = -\nu^Tb$, not much to do here
$ \inf\limits_x \nu^TAx = \inf\limits_x (A^T\nu)^Tx$ looks like a dual norm i.e. $\|A^T\nu\|_{*} = \inf\limits_x\{ (A^T\nu)^Tx | \|x\|\leq 1\}$, but here we have a constraint $\|x\|\leq 1$
Then we have
$g(\lambda, \nu)$ = $\inf\limits_x (\|x\| + \nu^TAx - \nu^Tb) = \inf\limits_x \|x\| + \|A^T\nu\|_{*} - \nu^Tb$, $\|x\| \leq 1$
Does anyone know how to deal with the $\|x\| \leq 1$ constraint and proceed from above?