Method 1: the series $e^x=\sum_{n\geq 0}\frac{x^n}{n!}$ is convergent for all real numbers $x$, so by the Divergence Test, $\lim_{n\to\infty}\frac{x^n}{n!}=0$. This means that $\frac{x^n}{n!}<1$ for all $n$ large enough.
Method 2: Let $x_n=\frac{x^n}{n!}$. Since $|x_n|=\frac{|x|^n}{n!}$, we can assume without any loss of generality that $x>0$. We choose $N>x$. Then, for $n>N$, we have
$$
x_n=\frac{x}{n}\times\dots\times\frac{x}{N}\times\frac{x}{N-1}\times\dots\times\frac{x}{2}\times\frac{x}{1}
$$
so $$0< x_n\leqslant C\cdot\left(\frac{x}{N}\right)^{n+1-N}$$
where $C$ is the constant $C=\frac{x}{N-1}\times\dots\times\frac{x}{1}$.
Since $r=\frac{x}{N}\in(-1,1)$, the theory of geometric sequences imply that $Cr^{n+1-N}$ converges to $0$. By Squeeze Theorem, $\{x_n\}_n$ also converges to $0$.