Let $a_1, \ldots, a_n > 0$. How to compute the limit $\lim_{n \to \infty} \sqrt[n]{a_1^n + \cdots + a_m^n}$?
My solution: $$ \lim_{n \to \infty} \sqrt[n]{a_1^n + \cdots + a_m^n} \\ = \lim_{n \to \infty} (1 + a_1^n + \cdots + a_m^n - 1)^{1/n} \\ = \lim_{n \to \infty} \left( (1 + a_1^n + \cdots + a_m^n - 1)^{\frac{1}{a_1^n + \cdots + a_m^n - 1}} \right)^{ \frac{a_1^n + \cdots a_m^n-1}{n}}. $$ But then we need to have the condition $a_1^n + \cdots + a_m^n - 1 \to 0$ ($n \to \infty$).
Thank you very much.