I have $H$ an Hilbert Space and $L:(H,\left\| \cdot \right\|_1) \rightarrow (H,\left\| \cdot \right\|_2)$ linear and bijective; here $\left<x,y\right>_2:=\left<Lx,Ly\right>_1$ and so $\left \| x \right \|_2:=\left \| Lx \right \|_1$
Where can I find the proof of the following? $$\left\| \cdot \right\|_1 \mbox{is equivalent to} \left\| \cdot \right\|_2 \leftrightarrow L \mbox{ is continuous}$$