I'm trying to prove that if $f \in L^1$ is such that $\lVert f\psi \rVert_{L^1} = 0$ for all $\psi \in C_c(\mathbb{R})$, then $f = [0] \in L^1$.
Here's my attempt:
Let $E_i$ be such that $$\bigcup_{i=1}^{\infty} E_i = \mathbb{R}$$ and $E_i \cap E_j = \emptyset$ for $i \neq j$. Since integrals are measures,
$$
\lVert f\lVert_{L^1} = \int_{\mathbb{R}} \lvert f\rvert \, d\mu
= \sum_{i=1}^{\infty} \int_{E_i} \lvert f\rvert \chi_{E_i} \, d\mu.
$$
Let $\phi \in C_c(\mathbb{R})$ be such that $ 0\leq \phi_i \leq 1$ and $\operatorname{supp}(\phi_i) \subset E_i$. Let $\psi \in C_c(\mathbb{R})$ be such that $\infty > \phi_i \geq 1$ and $ E_i \subset \operatorname{supp}(\psi_i).$ Then, by montonicity of the integral
$$
0 = \sum_{i=1}^{\infty} \int_{E_i} \lvert f\phi_i\rvert \, d\mu \leq \sum_{i=1}^{\infty} \int_{E_i} \lvert f\rvert \chi_{E_i} \, d\mu \leq \sum_{i=1}^{\infty} \int_{E_i} \lvert f\psi_i\rvert \, d\mu = 0.
$$
It follows that $\lVert f\rVert_{L^1} = 0$.
Is this argument valid? Is there a slicker argument?