We start with
\begin{align*}
\color{blue}{\sum_{n=0}^{\infty}\left(\prod_{i=0}^{n-1}\left(q^n-q^i\right)\right)^{-1}}
&=\sum_{n=1}^{\infty}\frac{1}{\prod_{i=0}^{n-1}\left(q^n-q^i\right)}\\
&=\sum_{n=0}^{\infty}\frac{q^{-n^2}}{\prod_{i=0}^{n-1}\left(1-q^{i-n}\right)}\\
&=\sum_{n=0}^{\infty}\frac{q^{-n^2}}{\prod_{i=0}^{n-1}\left(1-q^{-i-1}\right)}\tag{$i\to n-1-i$}\\
&\color{blue}{=\sum_{n=0}^{\infty}\frac{q^{-n^2}}{\prod_{i=1}^{n}\left(1-q^{-i}\right)}}\tag{1}
\end{align*}
Now it's time for some beautiful math from chapter 7, Identities of the Rogers-Ramanujan Type from The Theory of Partitions by G. E. Andrews.
We consider a function $F(x)$ analytic in $x$ at $0$, $F(0)=1$ such that the linear, second-order $q$-difference equation
\begin{align*}
F(x)=F(xq)+xqF(xq^2)\tag{2}
\end{align*}
holds. We set
\begin{align*}
c(x,q):=\frac{F(x)}{F(xq)}
\end{align*}
from which
\begin{align*}
c(x,q)&=1+\frac{xq}{c(xq,q)}\\
&=1+\frac{xq}{1+\frac{xq^2}{c(xq^2,q)}}\cdots\tag{3}
\end{align*}
follows. If we set
\begin{align*}
F(x)=\sum_{n\geq 0}A_n(q)x^n\tag{4}
\end{align*}
we obtain from (2)
\begin{align*}
\sum_{n\geq 0}A_n(q)x^n=\sum_{n\geq 0}A_n(q)(xq)^n+xq\sum_{n\geq 0}A_n(q)(xq^2)^n
\end{align*}
and comparing coefficients gives
\begin{align*}
A_n(q)&=q^nA_n(q)+q^{2n-1}A_{n-1}(q)\\
\color{blue}{A_n(q)}&=\frac{q^{2n-1}}{1-q^n}A_{n-1}(q)\\
&=\frac{q^{(2n-1)+(2n-3)}}{\left(1-q^n\right)\left(1-q^{n-1}\right)}A_{n-2}(q)\\
&=\cdots\\
&\,\,\color{blue}{=\frac{q^{1+3+\cdots+(2n-1)}}{\prod_{i=1}^n\left(1-q^i\right)}A_0(q)}\tag{5}
\end{align*}
We obtain from (4) and (5)
\begin{align*}
\color{blue}{F(x)=\sum_{n=0}^{\infty}\frac{q^{n^2}}{\prod_{i=1}^n\left(1-q^i\right)}x^n}
\end{align*}
and verbatim from the book:
Surprisingly $F(1)$ and $F(q)$ may be evaluated in terms of infinite products (as we shall prove later in this chapter), namely,
\begin{align*}
\color{blue}{F(1)}&=1+\frac{q}{1-q}+\frac{q^4}{(1-q)\left(1-q^2\right)}
+\frac{q^9}{(1-q)\left(1-q^2\right)\left(1-q^3\right)}+\cdots\\
&\,\,\color{blue}{=\prod_{n=0}^{\infty}\left(1-q^{5n+1}\right)^{-1}\left(1-q^{5n+4}\right)^{-1}}\tag{6}
\end{align*}
and
\begin{align*}
F(q)&=1+\frac{q^2}{1-q}+\frac{q^6}{(1-q)\left(1-q^2\right)}
+\frac{q^{12}}{(1-q)\left(1-q^2\right)\left(1-q^3\right)}+\cdots\\
&=\prod_{n=0}^{\infty}\left(1-q^{5n+2}\right)^{-1}\left(1-q^{5n+3}\right)^{-1}
\end{align*}
We conclude from (1) and (6)
\begin{align*}
\color{blue}{\sum_{n=0}^{\infty}\left(\prod_{i=0}^{n-1}\left(q^n-q^i\right)\right)^{-1}
=\prod_{n=0}^{\infty}\left(1-q^{-(5n+1)}\right)^{-1}\left(1-q^{-(5n+4)}\right)^{-1}\qquad\qquad |q|>1}
\end{align*}
Note: This is just a side-note from the introductory section of chapter 7. S.Ramanujan sent the following beautiful formulas to G. H. Hardy on 16 January 1913:
\begin{align*}
\frac{1}{1+\frac{e^{-2\pi}}{1+\frac{e^{-4\pi}}{1+\frac{e^{-6\pi}}{\vdots}}}}
=\left(\sqrt{\frac{5+\sqrt{5}}{2}}-\frac{\sqrt{5}+1}{2}\right)e^{2\pi/5}\\
1-\frac{e^{-\pi}}{1+\frac{e^{-2\pi}}{1-\frac{e^{-3\pi}}{\vdots}}}
=\left(\sqrt{\frac{5-\sqrt{5}}{2}}-\frac{\sqrt{5}-1}{2}\right)e^{\pi/5}\\
\end{align*}
Note that these continued fraction theorems are evaluations of (3), namely
\begin{align*}
c\left(1,e^{-2\pi}\right)\qquad\mathrm{and}\qquad c\left(1,-e^{-\pi}\right)
\end{align*}