Edit: 2023/06/17 We give a new proof.
Let
$$x = a + 1/b, \quad y = b + 1/c, \quad z = c + 1/a.$$
It suffices to prove that
$$(x - 1)(y-1) + (y-1)(z-1) + (z-1)(x - 1) \ge 3,$$
or
$$xy + yz + zx - 2(x + y + z) \ge 0. \tag{1} $$
To this end, note that (see Remarks at the end)
$$xyz - x - y - z - 2 = \frac{(abc - 1)^2}{abc} \ge 0. \tag{2}$$
Fact 1: Let $u, v, w \ge 0$ with $uvw - u - v - w - 2 \ge 0$.
Then $uv + vw + wu - 2(u + v + w) \ge 0.$
(The proof is given at the end.)
Using Fact 1, letting $u = x, v = y, w = z$, we know that (1) is true.
We are done.
$\phantom{2}$
Remarks:
How do we find $xyz - x - y - z - 2$?
From $x = a + 1/b, y = b + 1/c, z = c + 1/a$, after eliminating $a, b$, we have
$$\left( xy-1 \right) {c}^{2}+ \left( -xyz-x+y+z \right) c+xz-1 = 0.$$
It is a quadratic equation in $c$ with the discriminant
$$\Delta = (xyz - x - y - z + 2)(xyz - x - y - z - 2).$$
It must hold that $\Delta \ge 0$.
Then I calculate $xyz - x - y - z - 2
= \frac{(abc - 1)^2}{abc} \ge 0$.
I notice that
if $x, y, z \ge 0$ with $xyz - x - y - z - 2 \ge 0$,
then $xy + yz + zx - 2(x + y + z) \ge 0$.
$\phantom{2}$
Proof of Fact 1:
From $uvw - u - v - w - 2 \ge 0$, we have
$$(uv - 1)w \ge u + v + 2$$
which results in
$$uv > 1, \quad w \ge \frac{u + v + 2}{uv - 1}. \tag{3}$$
The desired inequality is written as
$$(u + v - 2)w \ge 2u + 2v - uv. \tag{4}$$
Using (3), we have $u + v \ge 2\sqrt{uv} > 2$.
Using (3) and (4), it suffices to prove that
$$(u + v - 2)\cdot \frac{u + v + 2}{uv - 1} \ge 2u + 2v - uv $$
or
$$\frac{(u + v + 1 - uv)^2 + uv - 5}{uv - 1} \ge 0. \tag{5}$$
If $uv \ge 5$, clearly (5) is true.
If $uv < 5$, we have
$$u + v + 1 - uv \ge 2\sqrt{uv} + 1 - uv
= 2 - (\sqrt{uv} - 1)^2 > 0$$
and thus
\begin{align*}
(u + v + 1 - uv)^2 + uv - 5
&\ge (2\sqrt{uv} + 1 - uv)^2 + uv - 5\\
&= (uv - 1)(\sqrt{uv} - 2)^2 \\
&\ge 0.
\end{align*}
Thus, (5) is true.
We are done.