Let $Y_0, Y_1, \ldots$ be independent random variables with
$P(Y_n = 1) = P(Y_n = -1) = 1/2$ for $n = 0, 1, 2, \ldots$
Define $X_n = Y_0Y_1Y_2\cdots Y_n = \prod_{i=0}^n Y_i$ for $n = 0, 1, 2, \ldots$
It can be shown that $X_0, X_1, X_2, \ldots$ are independent.
Define $\mathscr{Y} \doteq \sigma(Y_1, Y_2, \ldots)$
$\mathscr{T_n} \doteq \sigma(X_r \mid r > n) = \sigma(X_{n+1}, X_{n+2}, \ldots)$
$\mathscr{L} \doteq \bigcap_n \sigma(\mathscr{Y}, \mathscr{T_n})$
Prove $Y_0$ is $\mathscr{L}$-measurable $\iff$ $\sigma(Y_0) \subseteq \mathscr{L}$
What I tried:
\begin{align} & \forall n \in \mathbb{N}, \\[8pt] & \sigma(\mathscr{Y}, \mathscr{T_n}) = \sigma(\sigma(Y_1, Y_2, \ldots), \sigma(X_r \mid r > n)) \\[8pt] = {} & \sigma(\sigma(Y_1, Y_2, \ldots), \sigma(X_{n+1}, X_{n+2}, \ldots)) \\[8pt] = {} & \sigma(\sigma(Y_1, Y_2, \ldots), \sigma\left(\prod_{i=0}^{n+1} Y_i, \prod_{i=0}^{n+2} Y_i, \ldots\right)) \\[8pt] = {} & \sigma(\sigma(Y_1, Y_2, \ldots), \sigma\left(\prod_{i=0}^{n+1} Y_i, \prod_{i=0}^{n+2} Y_i, \ldots\right)) \\[8pt] = {} & \sigma(\sigma(Y_1, Y_2, \ldots), \sigma\left(Y_0\prod_{i=1}^{n+1} Y_i, Y_0\prod_{i=1}^{n+2} Y_i, \ldots\right)) \end{align}
It seems that $\sigma(Y_0) \subseteq \sigma(\sigma(Y_1, Y_2, \ldots), \sigma\left(\color{red}{Y_0}\prod_{i=1}^{n+1} Y_i, \color{red}{Y_0}\prod_{i=1}^{n+2} Y_i, \ldots\right))$? How do I prove that exactly?