Let topological space $X$ and $f:X \to C$. Show that the space
$$X_{f}=\{g \in C(X) \mid \sup|g-f|<\infty\}$$
is a complete metric space with distance function
$$d(g_1,g_2)=\sup_{x \in X}|g_1(x)-g_2(x)|.$$
Can anyone help me to show this?
Let topological space $X$ and $f:X \to C$. Show that the space
$$X_{f}=\{g \in C(X) \mid \sup|g-f|<\infty\}$$
is a complete metric space with distance function
$$d(g_1,g_2)=\sup_{x \in X}|g_1(x)-g_2(x)|.$$
Can anyone help me to show this?
Let $\left(f_n\right)_{n \in \mathbb{N}}$ a Cauchy sequence in $X_{f}$ with metrix $d$; let us remember that $\lim_{n\rightarrow\infty}f_{n}\notin X_{f}$ with metrix $d$ means that
$\sup_{x\in X}\left|\lim_{n\rightarrow\infty}f_{n}-f\right|=\sup_{x\in X}\left|f_{n}-f\right|=\sup_{x\in X}\lim_{n\rightarrow\infty}\left|f_{n}-f\right|>\infty$
by continuity of the norm.
Suppose that $\lim_{n\rightarrow\infty}f_{n}\notin X_{f}$ with metrix $d$, this means that given $k>0$ there is $x_{k}\in X$ such that
$\lim_{n\rightarrow\infty}\left|f_{n}\left(x_{k}\right)-f\left(x_{k}\right)\right|>k$
This is, there is $\xi>0$ such that for all $N \in \mathbb{N}$, $n>N$ and $\left|f_{n}\left(x_{k}\right)-f\left(x_{k}\right)\right|-k>\xi$.
Therefore, let $m$ fixed but arbitrary, so we have
$\xi+k-d\left(f_{m},f\right)<\xi+k-\left|f_{m}\left(x_{k}\right)-f\left(x_{k}\right)\right|<\left|f_{n}\left(x_{k}\right)-f_{m}\left(x_{k}\right)\right|$
and since
$\left\{ \left|f_{n}\left(x_{k}\right)-f_{m}\left(x_{k}\right)\right|\::\: k\in\mathbb{N}\right\} \subseteq\left\{ \left|f_{n}\left(x\right)-f_{m}\left(x\right)\right|\::\: x\in X\right\} $
then
$\xi+k-d\left(f_{m},f\right)\leq\sup\left\{ \left|f_{n}\left(x_{k}\right)-f_{m}\left(x_{k}\right)\right|\::\: k\in\mathbb{N}\right\} \leq d\left(f_{n},f_{m}\right)$
Therefore, $d\left(f_{n},f_{m}\right)\rightarrow\infty$ which contradicts that $\left(f_n\right)_{n \in \mathbb{N}}$ a Cauchy sequence in $X_{f}$ with metrix $d$.