In this question :
A composite odd number, not being a power of $3$, is a fermat-pseudoprime to some base
I did not hit my own intend. I only asked for the numbers $n$ that are not a fermat-pseudoprime to any base $a$ with $1<a<n-1$. What I really meant is, for which composite numbers $n$, there is no number $a$ with $1<a<n-1$, such that $n$ is strong-pseudoprime to base $a$.
In short :
Which odd composite numbers $n$ are strong-pseudoprime to no base $a$ with $1<a<n-1$ ?
This is a weaker requirement because $a^{n-1}\equiv 1\ (\ mod\ n\ )$ does not imply that $n$ is strong-pseudoprime to base $a$. This is the case, if $n=2^m\ u+1$ with $u$ odd and either $a^u\equiv 1\ (\ mod\ n)$ holds or $a^{2^ku}\equiv -1\ (\ mod\ n)$ holds for some $k$ with $0<k<m$.
According to my PARI/GP-program, the numbers below $1000$ are :
9 15 21 27 33 35 39 45 51 55 57 63 69 75 77
81 87 93 95 99 105 111 115 117 119 123 129 135 141 143
147 153 155 159 161 165 171 177 183 187 189 195 201 203 207
209 213 215 219 225 235 237 243 245 249 253 255 261 267 273
275 279 285 287 291 295 297 299 303 309 315 319 321 323 327
329 333 335 339 345 351 355 357 363 369 371 375 381 387 391
393 395 399 405 407 411 413 415 417 423 429 437 441 447 453
455 459 465 471 473 477 483 489 495 497 501 507 513 515 517
519 525 527 531 535 537 539 543 549 551 555 567 573 575 579
581 583 585 591 597 603 605 609 611 615 621 623 627 633 635
639 649 655 657 663 665 667 669 675 681 687 693 695 699 705
707 711 713 717 723 729 731 735 737 741 747 749 753 755 759
765 767 771 777 779 783 789 791 795 799 801 803 807 813 815
819 825 831 833 835 837 843 849 851 855 867 869 873 875 879
885 893 895 897 899 903 909 913 915 917 921 923 927 933 935
939 943 945 951 955 957 959 963 969 975 979 981 987 989 993
995 999