In this question, why is it that
$\mathbb P(X\in B)-\mathbb P(Y\in B)=\mathbb P(X\in B \setminus Y\in B)$
?
I think it should be $\mathbb P(X\in B \setminus Y\in B) = \mathbb P(Y\in B \setminus X\in B) = 0$
$\to \mathbb P(X\in B) - P(X\in B \cap Y\in B) = 0$ and $\mathbb P(Y\in B) - P(X\in B \cap Y\in B) = 0$
$\to P(X\in B) = P(X\in B \cap Y\in B) = \mathbb P(Y\in B)$