Assume that the conclusion is wrong, and let $m$ be the smallest
index such that $a_m \ne 0$. Without loss of generality we can
assume that $m=1$, i.e.
$$ \tag 1
a_1 \ne 0 \, .
$$
Let $0 < \varepsilon < \frac 12|a_1|$. $\sum_{n=1}^\infty a_n$ is absolutely convergent, therefore there is an integer $N$ such that
$$
\sum_{n=N+1}^\infty |a_n| < \varepsilon \, .
$$
and in particular $|a_n| < \varepsilon$ for $n > N$. It follows that
for all integers $k$,
$$
\sum_{n=N+1}^\infty |a_n|^k \le \sum_{n=N+1}^\infty \varepsilon^{k-1}|a_n| = \varepsilon^{k-1} \sum_{n=N+1}^\infty |a_n| < \varepsilon^k \, .
$$
Since $\sum a_n^k =0$, the $k$-th power sums
$$
p_k := p_k(a_1, \ldots, a_N) = \sum_{n=1}^N a_n^k
$$
satisfy
$$ \tag 2
|p_k| = \bigl| \sum_{n=N+1}^\infty a_n^k \, \bigr| \le
\sum_{n=N+1}^\infty |a_n|^k < \varepsilon^k
$$
for $1 \le k \le N$.
Now let
$$
e_k := e_k(a_1, \ldots, a_N)
$$ be the $k$-th elementary symmetric polynomial
in the variables $a_1, \ldots, a_N$.
Then $e_0 = 1$, and Newton's identities state that
$$
\begin{aligned}
e_1 &= p_1 \\
2e_2 &= e_1 p_1 - p_2 \\
3e_3 &= e_2 p_1 - e_1 p_2 + p_3
\end{aligned}
$$
and generally
$$ \tag 3
k e_k = \sum_{i=1}^k (-1)^{i-1} e_{k-i} p_i \, \text{ for } k \ge 0 \, .
$$
From $(2)$ and $(3)$ it follows easily by induction that
the elementary symmetric polynomials satisfy
$$
|e_k| \le \varepsilon^k \text{ for } 0 \le k \le N \, .
$$
Now define
$$
P(x) = (x-a_1)(x-a_2) \cdots (x-a_N) \\
= x^N - e_1 x^{N-1} + e_2 x^{N-2} \cdots \pm e_N \, .
$$
Then $P(a_1) = 0$ and therefore $r := |a_1|$ satisfies
$$
r^N \le |e_1| r^{N-1} + |e_2| r^{N-2} + \cdots + |e_N| \\
\le \varepsilon r^{N-1} + \varepsilon^2 r^{N-2} + \cdots + \varepsilon^N \\
= \varepsilon r^{N-1} \bigl( 1 + \frac{\varepsilon}{r } + \cdots +
(\frac{\varepsilon}{r })^{N-1} \bigr)
$$
or
$$
1 \le \frac{\varepsilon}{r } \bigl( 1 + \frac{\varepsilon}{r } + \cdots +
(\frac{\varepsilon}{r })^{N-1} \bigr) \, .
$$
$\varepsilon$ was chosen such that $0 < \frac \varepsilon r < \frac 12$, therefore
$$
1 < \frac 12 \bigl( 1 + \frac 12 + \cdots +
(\frac 12)^{N-1} \bigr) < 1
$$
which is a contradiction.
So the initial assumption is wrong, and it is proven that
all $a_n$ are zero.