-1

Let $G$ be a group. If $x, y \in G$ commute and $\text{gcd}(|x|, |y|) = 1$, does it follow that $|xy| = |x||y|$?

EDIT: Progress so far. Let $C = |xy|$; then $x^C = (y^{-1})^C$. I am not sure what do from here though.

1 Answers1

2

Let $d$ be the order of $xy$. Now $(xy)^{mn}=e$. Hence $d|mn$.

Now $(xy)^d = e \implies x^d y^d = e \implies x^{dn} = e \implies m|nd$.

Since $m$ does not divide $n$, $m|d$.

Similarly $n|d$ since $gcd(m,n)=1$. Thus, $mn|d$.

Cloudscape
  • 5,326
Learnmore
  • 31,675
  • 10
  • 110
  • 250