As in your post, let $z_1$, $z_2$ be arbitrary points.
Recall the variational characterization of the projection operator onto nonempty, closed, convex sets:
$$ \langle z_1 - P(z_1), x- P(z_1) \rangle\leq 0 \; \forall \; x \in C $$
Now also notice that by definition $P(z_2) \in C$ thus we get:
$$ \langle z_1 - P(z_1), P(z_2)- P(z_1) \rangle\leq 0 $$
Similarly we also get:
$$
\begin{aligned}
&\langle z_2 - P(z_2), P(z_1)- P(z_2) \rangle\leq 0 \\
\Rightarrow &\langle P(z_2) - z_2, P(z_2)- P(z_1) \rangle\leq 0
\end{aligned}
$$
Adding these two inequalities, rearranging and finally applying the Cauchy-Schwarz inequality, we get:
$$
\begin{aligned}
\langle P(z_2) - P(z_1), P(z_2)- P(z_1) \rangle &\leq \langle z_2 - z_1, P(z_2)- P(z_1) \rangle \\
& \leq \vert\vert z_2 - z_1 \vert\vert \; \vert\vert P(z_2) - P(z_1) \vert\vert
\end{aligned}
$$
Thus:
$$
\begin{aligned}
&\vert\vert P(z_2) - P(z_1) \vert\vert^2 \leq \vert\vert z_2 - z_1 \vert\vert \; \vert\vert P(z_2) - P(z_1) \vert\vert \\
\Rightarrow &\vert\vert P(z_2) - P(z_1) \vert\vert \leq \vert\vert z_2 - z_1 \vert\vert
\end{aligned}
$$