Prove that $ k[x_1,\ldots,x_4]/ \langle x_1x_2,x_2x_3,x_3x_4,x_4x_1 \rangle$ is not Cohen-Macaulay.
We have $\langle x_1x_2,x_2x_3,x_3x_4,x_4x_1 \rangle=\langle x_1,x_3 \rangle \cap \langle x_2,x_4\rangle$. Therefore $\dim k[x_1,\ldots,x_4]/ \langle x_1x_2,x_2x_3,x_3x_4,x_4x_1 \rangle=2$.
How do I prove $ k[x_1,\ldots,x_4]/ \langle x_1x_2,x_2x_3,x_3x_4,x_4x_1 \rangle$ is not Cohen-Macaulay?