1

This question is related to my previous question here.

Let $n, m > 1$. The map $\mathbb{Z} \twoheadrightarrow \mathbb{Z}/m\mathbb{Z}$, of reduction mod $m$, induces a group homomorphism $F: \text{SL}_n(\mathbb{Z}) \to \text{SL}_n(\mathbb{Z}/m\mathbb{Z})$.

What is an example of an element $g \in \text{Ker}(F)$, $g \neq \text{Id}$?

1 Answers1

0

The kernel just consists of matrices congruent to the identity mod $m$, so an example for $n=2$ would be: $\pmatrix{1+m & 2m\\ -3m & 1-5m}$.

user26857
  • 53,190
oxeimon
  • 12,569