This question is related to my previous question here.
Let $n, m > 1$. The map $\mathbb{Z} \twoheadrightarrow \mathbb{Z}/m\mathbb{Z}$, of reduction mod $m$, induces a group homomorphism $F: \text{SL}_n(\mathbb{Z}) \to \text{SL}_n(\mathbb{Z}/m\mathbb{Z})$.
What is an example of an element $g \in \text{Ker}(F)$, $g \neq \text{Id}$?