Let $(X,\tau)$ be a topological space and let $\sim$ be an equivalence relation on $X$. Now define an equivalence relation $\approx$ on $X \times X $ by $ [(x,y)]_\approx = [x]_\sim \times[y]_\sim $
Is it true that $X/\sim \times $ $X/\sim $ $ \cong (X\times X)/\approx $ ?