Another prelim question... Suppose $0<q<p<\infty$, and $E\subseteq \mathbb{R}^n$ has finite measure. Suppose $f$ is in weak $L^p$, i.e. $\lambda(|f| > t) \leq N/t^p$. Show $f \in L^q(E)$ and moreover $\int_E |f|^q \leq C_{n,p,q} N^{q/p}\lambda(E)^{1-q/p}$.
First let's show $f \in L^q(E)$. For $g$ a strictly increasing function with $g(0)=0$ $$ \int_E |f|^q = \sum_{k} \int_E |f|^q 1_{g(k) < f \leq g(k+1)} \leq \sum_k g^q(k+1) (\lambda(f > g(k)) \wedge \lambda(E)) $$ $$ \leq\sum_k g^q(k+1) (\frac{N}{g^p(k)} \wedge \lambda(E)) $$ so it suffices to choose $g$ such that $\sum_{k\geq M} \frac{g^q(k+1)}{g^p(k)} < \infty$ for some $M$. Taking $g(k) = 2^k$ (except $g(0)=0$) and $M>1$ this turns into $\sum_{k\geq M} 2^q (2^{(q-p)})^n < \infty$ which is of course true. Okay so we have $f \in L^q(E)$. Now what can be done to show the bound?
I've tried writng $|f|^q = (|f|^p)^{q/p}$ and using Fubini and Holder $$ \int_E |f|^q = \int_0^\infty \int \frac{p}{q}t^{p/q-1} 1_{E} 1_{0\leq |f|^p \leq t}dx dt \leq \int_0^\infty\frac{p}{q}t^{p/q-1} \lambda(E)^{1-q/p} \lambda(f>t^{1/p})^{q/p}dt $$ $$ = \frac{p}{q}\lambda(E)^{1-q/p} \int_0^\infty t^{p/q-1} \lambda(f>t^{1/p})^{q/p} dt $$ but I can't get an estiamte like this to turn out to be finite.