For what values of $x$ the infinite series
$\sum\left[(n^3+1)^\frac13-n\right]x^n$ converges?
Please help me out.
Using ratio test
$\begin{aligned}&\lim_{n\to \infty}\frac{(n^3+1)^{1/3}-n}{\left[\left((n+1)^3+1\right)^{1/3}-(n+1)\right]x}&>1\\\implies&\lim_{n\to \infty}\frac{n[\left(1+\frac1{n^3}\right)^{1/3}-1]}{n\left[\left(\left(1+\frac1n\right)^3+\frac1{n^3}\right)^{1/3}-\left(1+\frac1n\right)\right]x}&>1\\\implies&\lim_{n\to \infty}\frac{\left[\left(1+\frac1{3n^3}\right)-1\right]}{\left[\left(\left(1+\frac1n\right)^3+\frac1{n^3}\right)^{1/3}-(1+\frac1n)\right]x}&>1\end{aligned}$
But I can't understand how will I approximate the denominator $\left(\left(1+\frac1n\right)^3+\frac1{n^3}\right)^{1/3}$
Please help me out.