If $$\frac{3-\tan^2\frac{\pi}{7}}{1-\tan^2\frac{\pi}{7}}=\alpha \cos\frac{\pi}{7}.$$ If $\alpha$ is a natural number.Find $\alpha$.
My attempt is:
$$\frac{3-\tan^2\frac{\pi}{7}}{1-\tan^2\frac{\pi}{7}}=\alpha \cos\frac{\pi}{7}$$
convert it into sin,cos
$$\frac{3\cos^2\frac{\pi}{7}-\sin^2\frac{\pi}{7}}{\cos^2\frac{\pi}{7}-\sin^2\frac{\pi}{7}}=\alpha \cos\frac{\pi}{7}$$
$$\frac{3\cos^2\frac{\pi}{7}-\sin^2\frac{\pi}{7}}{\cos\frac{2\pi}{7}}=\alpha \cos\frac{\pi}{7}$$
$$3\cos^2\frac{\pi}{7}-\sin^2\frac{\pi}{7}=\alpha \cos\frac{\pi}{7}\cos\frac{2\pi}{7}$$
$$2\cos^2\frac{\pi}{7}+\cos^2\frac{\pi}{7}-\sin^2\frac{\pi}{7}=\alpha \cos\frac{\pi}{7}\cos\frac{2\pi}{7}$$
$$2\cos^2\frac{\pi}{7}+\cos\frac{2\pi}{7}=\alpha \cos\frac{\pi}{7}\cos\frac{2\pi}{7}$$
but i got stuck and could not further solve it.... I would appreciate the help,thanks in advance.