Let $\Pi$ denote the group admitting $$ \langle x,y \mid x^{-1}y^2x=y^{-2}, y^{-1}x^2y=x^{-2} \rangle$$ as a presentation. Clearly, $$\Pi \simeq \langle x,y,a,b \mid x^{-1}ax=a^{-1} , y^{-1}by=b^{-1}, a=y^2,b=x^2 \rangle.$$ For convenience, we will modify slightly this presentation as $$\Pi'=\langle x,y,a_1, \ldots, a_n,b_1, \ldots, b_n \mid x^{-1}\bar{a} x=\bar{a}^{-1} , y^{-1}\bar{b}y=\bar{b}^{-1}, \bar{a}=y^2,\bar{b}=x^2 \rangle$$ where $\bar{a}$ and $\bar{b}$ denote respectively $a_1 \cdots a_n$ and $b_1 \cdots b_n$. Using Tietze transformations, it is not difficult to notice that $\Pi' \simeq \Pi \ast \mathbb{F}_{n-1} \ast \mathbb{F}_{n-1}$ where the two free groups correspond to $\langle a_2, \ldots, a_n \rangle$ and $\langle b_2, \ldots, b_n \rangle$ respectively. In particular, we deduce that $\Pi$ is torsion-free if and only if so is $\Pi'$. On the other hand, $\Pi'$ can be decomposed as
$$\left( \underset{:=\Pi_a}{\underbrace{\langle x,a_1,\ldots,a_n \mid x^{-1} \bar{a} x=\bar{a}^{-1} \rangle}} \ast \underset{:=\Pi_b}{\underbrace{ \langle y,b_1, \ldots, b_n \mid y^{-1} \bar{b} y = \bar{b}^{-1} \rangle}} \right) / \langle \langle \bar{a}=y^2,\bar{b}=x^2 \rangle \rangle.$$
As above, using Tietze transformations, we notice that $\Pi_a \simeq \Pi_b \simeq BS(1,-1) \ast \mathbb{F}_{n-1}$ where $BS(1,-1)$ is the Baumslag-Solitar group with presentation $\langle p,q \mid pqp^{-1}=q^{-1} \rangle$. In particular, $\Pi_a$ and $\Pi_b$ are torsion-free since so is $BS(1,-1)$: it is an HNN extension over a torsion-free group, namely $\mathbb{Z} \underset{\mathbb{Z}}{\ast}$. (We also have the isomorphism $BS(-1,1) \simeq \langle x,y \mid x^2=y^2 \rangle$, so that we may apply the arguments of this previous question.)
Now, according to Theorem 10.1 in Lyndon and Schupp's book Combinatorial group theory, if a family $R \subset F_1 \ast F_2$ satisfies the small cancellation property $C'(1/8)$, then the quotient $(F_1 \ast F_2) / \langle \langle R \rangle \rangle$ is torsion-free provided that $F_1$ and $F_2$ are torsion-free and $R$ does not contain a cyclic permutation of a proper power.
In our case, $R= \{ \bar{a}y^{-1}, \bar{b}x^{-1} \rangle$ satisfies $C'(1/n)$, so that we deduce from Lyndon and Schupp's theorem that $\Pi'$ is torsion-free whenever $n \geq 8$. A fortiori, $\Pi$ is torsion-free.
For more information on small cancellations for free products, see Section V.9 of Lyndon and Schupp's book.