You can write a generating function for this problem. Let me generalize your question. For $n\in\mathbb{N}_0$ and $k\in\mathbb{N}$, let $a_k^n$ be the number of ways to write $n$ as a sum $x_1+x_2+\ldots+x_k$ of integers $x_1,x_2,\ldots,x_k$ such that $0\leq x_1\leq x_2 \leq \ldots \leq x_k$.
Observe that this is the same problem as writing $n$ in the form $y_1+2y_2+\ldots+ky_k$, where $y_1,y_2,\ldots,y_k\in\mathbb{N}_0$. To see this, we take $y_k:=x_1$ and $y_{k-i}:=x_{i+1}-x_i$ for $i=1,2,\ldots,k-1$. Hence, the generating function $f_k(t):=\sum_{n=0}^\infty\,a_n^k\,t^k$ is given by $$f_k(t)=\prod_{i=1}^k\left(\sum_{r=0}^\infty\,t^{ir}\right)=\prod_{i=1}^k\,\left(\frac{1}{1-t^i}\right)=\frac{1}{\prod_{i=1}^k\,\left(1-t^i\right)}\,.$$
For example, $f_4(t)=1+t+2t^2+3t^3+5t^4+6t^5+9t^6+11t^7+\ldots$. One not-so-nice recursive formula for $a^n_k$'s is $a^n_k=1+\sum_{j=1}^{k-1}\,\sum_{r=1}^{\left\lfloor n/(j+1)\right\rfloor}a_j^{n-r(j+1)}=a_k^{n-k}+a_{k-1}^{n}$ for $n\in\mathbb{N}_0$ and for integers $k>1$, where $a^n_1=1$ for every $n\in\mathbb{N}_0$ and $a^0_k=1$ for every $k\in\mathbb{N}$. However, I think having the generating function is a sufficient answer. If you want the number of solutions in which $x_1 \geq 1$, then it is easily seen that the answer for each $n$ is $a^{n-k}_k$ if $n \geq k$, and $0$ if $n<k$.