Problem:
Evaluate$$\int_0^1 \dfrac{\ln \left(a+\sqrt{a^2+1}\right)}{a\sqrt{a^2+1}}da$$
It was suggested that I try Integration By Parts.
Problem:
Evaluate$$\int_0^1 \dfrac{\ln \left(a+\sqrt{a^2+1}\right)}{a\sqrt{a^2+1}}da$$
It was suggested that I try Integration By Parts.
If we use the substitution $a=\sinh u$, then $u=\log v$, we are left with:
$$ I = \int_{0}^{\log(1+\sqrt{2})}\frac{u\,du}{\sinh u}=\int_{1}^{1+\sqrt{2}}\frac{2\log v}{v^2-1}\,dv = \left.\frac{d}{d\alpha}\int_{1}^{1+\sqrt{2}}\frac{v^{\alpha}\,dv}{v^2-1}\right|_{\alpha=0}$$ that ultimately depends on $\frac{\pi^2}{4}$, the product of some logarithms, $\text{Li}_2(1-\sqrt{2})$ and $\text{Li}_2(\sqrt{2}-1)$:
$$ I = \frac{\pi^2}{4}+\log(\sqrt{2}+1)\log(\sqrt{2}-1)+\text{Li}_2(1-\sqrt{2})-\text{Li}_2(\sqrt{2}-1),$$
since: $$ \int\frac{\log v}{v+1}\,dv=\log v \log(1+v)+\text{Li}_2(-v), $$ $$ \int\frac{\log v}{v-1}\,dv = -\text{Li}_2(1-v). $$ Not exactly a trivial integral. The closed form:
$$ I = \frac{\log^2(1+\sqrt{2})}{2} $$
follows for the functional identity for the dilogarithm: $$ \text{Li}_2(1-x)+\text{Li}_2(1-x^{-1})=-\frac{1}{2}\log^2 x $$
that is straightforward to prove through differentiation.
Rewrite $\ln (a+\sqrt{a^2+1})= \sinh^{-1} a $ \begin{align} I=& \int_0^1 \frac{\ln (a+\sqrt{a^2+1})}{a\sqrt{a^2+1}}da\\ =&\int_{0}^{\infty}\frac{\sinh^{-1} a}{a\sqrt{a^2+1}} \overset{a=\sinh t}{da} -\int_{1}^{\infty}\frac{\sinh^{-1} a}{a\sqrt{a^2+1}} \overset{a\to1/a}{da}\\ =&\int_{0}^{\infty} \frac t{\sinh t}\overset{t=\ln y}{dt}-\int_{0}^{1}\frac{\text{csch}^{-1} a}{\sqrt{a^2+1}} \overset{ibp}{da} \\ =&\ 2\int_0^1 \frac{\ln y}{y^2-1}dy -\text{sinh}^{-1}1\ \text{csch}^{-1}1-I\\ = &\ \frac{\pi^2}8-\frac12 (\sinh^{-1}1)^2 \end{align}