Let H be a subgroup of S4 where $H = \{e, B , C ,D \}$
$B(1)=2,B(2)=1,B(3)=4,B(4)=3$
$C(1)=3,C(2)=4,C(3)=1,C(4)=2$
$D(1)=4,D(2)=3,D(3)=2,D(4)=1$
Prove that H is a normal subgroup.
I've tried using the definition that $H$ is normal $\iff gH=Hg$, $\forall g$
As I can't take all the 24 elements of S4 and check it,I've tried with a general form: $g(1)=a,g(2)=b,g(3)=c,g(4)=d$. I managed to find $gH$,but $Hg$ isn't as easy.
What I've also noticed is that $BC=D,CD=B,DB=C, B=B^{-1} , C=C^{-1} , D=D^{-1}$ and $B^{2}=C^{2}=D^{2}=e$.
Can you give me a hand, please?