Prelude
Cconsider the finite abelian group $\mathcal G = \prod_{i=1}^A \mathbb Z_{a_i}$ and let $\mathbf s \in \mathcal G$. Let $\mathcal H = \operatorname{grp}({\mathbf s})$ be the subgroup of $\mathcal H$ generated by $\mathbf s$. Then, for some integer, $S$, there is an isomorphism $f:\mathbb Z_S \to \mathcal H$ described by $f(\bar t)= t\mathbf s$.
So there must be an isomorphism $\kappa:\mathcal H \to \mathbb Z_S$ which is the inverse mapping of $f$. I got curious about what $\kappa$ must look like. This is a theorem that I came up with. Please let me know if you find any faults with it. Especially let me know if someone has already done something like this before. I have posted the proof as an answer.
Setup
Let $\mathcal G = \prod_{i=1}^A \mathbb Z/a_i\mathbb Z$
Let $\mathbf s= (s_1, s_2, s_3, \dots, s_A)= (s_i)_{i=1}^A$.
Let $\mathcal H = \operatorname{grp}({\mathbf s})$ be the subgroup of
$\mathcal H$ generated by $\mathbf s$.
Let $S = \operatorname{ord} \mathbf s$.
Create the following list of ordered integer $A$-tuples.
$\mathbf a = (a_i)_{i=1}^A$.
$\mathbf s = (s_i)_{i=1}^A$.
$\mathbf g = (\gcd(a_i,s_i))_{i=1}^A$.
$\mathbf m = \left(\dfrac{a_i}{g_i}\right)_{i=1}^A$.
$\mathbf p = (p_i)_{i=1}^A$ Where \begin{array}{ll} (1.) &p_i \mid m_i \; (1 \le i \le A)\\ (2.) &i \ne j \implies \gcd(p_i,p_j) = 1 \; (1 \le i,j \le A)\\ (3.) &S = \prod_{i=1}^A p_i = \operatorname{lcm}\{m_i\}_{i=1}^A\\ \end{array}
$\mathbf t = \left(\dfrac{a_i}{p_i}\right)_{i=1}^A$.
$\mathbf r = \left(\dfrac{a_i}{p_i\cdot g_i}\right)_{i=1}^A = \left(\dfrac{m_i}{p_i}\right)_{i=1}^A = \left(\dfrac{t_i}{g_i}\right)_{i=1}^A$.
$\mathbf{\alpha} = (\alpha_i)_{i=1}^A$.
\begin{array}{l} & \text{Note that } \gcd \left\{\dfrac{S}{p_i}\right\}_{i=1}^A = \dfrac{S}{\operatorname{lcm}\{p_i\}_{i=1}^A} = 1.\\ & \text{So there exists integers } \lambda_i \text{ such that } \sum_{i=1}^A \lambda_i \dfrac{S}{p_i} = 1. \\ & \text{We define }\alpha_i = \lambda_i \dfrac{S}{p_i} \pmod{S}.\\ \end{array}
$\mathbf {\omega} = (\omega_i)_{i=1}^A$.
$\qquad $ Note that $\; \gcd\left(\dfrac{s_i}{g_i}, m_i\right) =\gcd\left(\dfrac{s_i}{g_i}, \dfrac{a_i}{g_i}\right) = 1$
$\qquad$ We define $ \omega_i = \left(\dfrac{s_i}{g_i}\right)^{-1}\pmod{m_i}$
$\mathbf{\beta}_i \equiv \alpha_i \ \omega_i \pmod S \; (i=1..A)$.
Example
As an example, let $\mathcal G = \mathbb Z_{36} \times \mathbb Z_{40} \times \mathbb Z_{72}$. Let $\mathbf s= (\overline{16}, \overline{15}, \overline{30})$.
Then $\mathcal H = \operatorname{grp}({\mathbf s})$
$S = 72$. We find
a: 36 40 72
s: 16 15 30
g: 4 5 6
m: 9 8 12
p: 9 8 1
t: 4 5 72
r: 1 1 12
α: -1 1 0
ω: 7 3 5
β: -7 3 0
You may have noticed a preponderance of variables here. to avoid adding any more than is necessary, I will use the notation $<n>$ to mean the same thing as "$x$, where $x \in \{0, 1, 2, \dots, n-1\}$". So for example, $<5>$ represents a variable that can take on the value $0, 1, 2, 3, 4$.
Finally, here is my theorem.
T H E O R E M
For $\mathbf x \in \mathcal G$, define $\kappa = \sum_{i=1}^A \left \lfloor \dfrac{x_i}{g_i} \right \rfloor \beta_i \pmod S$.
Then every $\mathbf x \in \mathcal G$ can be expressed uniquely as
$$ \mathbf x = \kappa \mathbf s + ( p_i \, g_i <r_i> + <g_i>)_{i=1}^A$$
Continuing with our example, we see that, for $(x,y,z) \in \mathcal G$,
$\kappa = -7\lfloor x/4 \rfloor + 3\lfloor y/5 \rfloor \pmod{72}$.
Then every $(x,y,z) \in \mathcal G$ can be expressed uniquely as
$$(x, y, z) = \kappa(16, 15, 30) + (36<1> + <4>, 40<1> + <5>, 6<12> + <6>)$$
which simplifies to
$$(x, y, z) = \kappa(16, 15, 30) + (<4>, <5>, <72>)$$
Note that this implies that all triples of the form $(<4>, <5>, <72>)$ constitute a transversal of the cosets of $\mathcal H$ in $\mathcal G$.