I'm new to algebra and got stuck with concept of ideals.
The question is to prove that
$$I = \left\{ {{a_0} + {a_1}x + \cdots + {a_n}{x^n} \mid {a_i} \in \mathbb{Z},{a_0} \in 2\mathbb{Z}} \right\} $$ is a non-principal ideal of $\mathbb{Z}[x]$.
I tried to show for any $f \in \mathbb{Z}\left[ x \right]$ the principal ideal $fR \ne I$.
So I considered three different cases:
1) $f$ is an odd constant polynomial.
2) $f$ is an even constant polynomial.
3) $f$ is a non-constant polynomial.
Then I had, $$\begin{array}{l} aR = a\left( {{\alpha _0} + {\alpha _1}x + \cdots {\alpha _n}{x^n}} \right)\\ bR = b\left( {{\alpha _0} + {\alpha _1}x + \cdots {\alpha _n}{x^n}} \right)\\ \left( {x + 1} \right)R = {\alpha _0} + \left( {{\alpha _0} + {\alpha _1}} \right)x + \left( {{\alpha _1} + {\alpha _2}} \right){x^2} + \cdots + \left( {{\alpha _{n - 1}} + {\alpha _n}} \right){x^n} \end{array} $$
where ${\alpha _i} \in \mathbb{Z}$ and $a$ is an even constant and $b$ is an odd constant.
But I cannot distinguish any difference between $fR$ and $I$ with above expressions.
Or is it just enough to say that
$$\begin{array}{l} 2 \cdot R = 2{\alpha _0} + 2{\alpha _1}x + \cdots + 2{\alpha _n}{x^n}\\ \therefore 2{\alpha _1},2{\alpha _2}, \cdots ,2{\alpha _n} \ne \mathbb{Z}\\ \\ 1 \cdot R = {\alpha _0} + {\alpha _1}x + \cdots + 2{\alpha _n}{x^n}\\ \therefore {\alpha _0} \ne 2\mathbb{Z}\\ \\ \left( {1 + x} \right) \cdot R = {\alpha _0} + \left( {{\alpha _0} + {\alpha _1}} \right)x + \cdots + \left( {{\alpha _{n - 1}} + {\alpha _n}} \right){x^n} + {\alpha _n}{x^{n+1}}\\ \therefore {x^{n+1}} \notin I \end{array} $$