4

I've read this PDF where it explains how to find the last digit of a number.

If I were to find the last digit of $9^{1500}$ I would simply write it as $(3^{2})^{1500}$ and then use the patterns in the PDF for $3^{4n}$.

The problem here is that I'm asked to find the last $2$ digits. I think I could try to find patterns for the last 2 digits of $3^x$ or for $9^x$ but this would waste a lot of time, and since this problem was supposed to be solved by hand, I think this is not the best method. I'm also having problems to find literature about these problems of finding last digits of large exponents. Can somebody recommend be some?

Poperton
  • 6,594

8 Answers8

13

$(10-1)^{1500} = 10^{1500} - \binom{1500}{1}10^{1499}{1^1} + ... + \binom{1500}{1498}10^21^{1498} - \binom{1500}{1499}10^11^{1499} + 1^{1500}$ Only the last term is not divisible by hundred. Thus, $9^{1500} \equiv 1 \mod 100$ $i.e.$ the last two digits are 01.

Ojas
  • 2,206
  • 1
  • 18
  • 26
  • 3
    To be clearer, \begin{align}(10-1)^{1500} &= 10^{1500} - \binom{1500}{1}10^{1499}{1^1} + ... + \binom{1500}{1498}10^21^{1498} - \binom{1500}{1499}10^11^{1499} + 1^{1500}\&=100R-1500\cdot10^1\cdot1^{1499}+1\&=100(R-150)+1\&=100S+1,S\in{\Bbb{N}} \end{align} – Mythomorphic May 29 '15 at 06:20
8

Calculating the last two digits is like taking the number $\mod 100$.

$$9 \equiv 9\mod 100\\ 9^2 \equiv 81\mod 100\\ 9^3=729\equiv 29\mod 100\\ 9^4=9\cdot 9^3 \equiv 9\cdot 29 = 261\equiv 61\mod 100\\ 9^5\equiv 9\cdot 61 = 549\equiv 49\mod 100\\ 9^6 \equiv 9\cdot 49 = 441\equiv 41\mod 100\\ 9^7\equiv 9\cdot 41 = 369\equiv 69\mod 100\\ 9^8\equiv 9\cdot 69 = 721\equiv 21\mod 100\\ 9^9\equiv 9\cdot 21 = 189\equiv 89\mod 100\\ 9^{10}\equiv 9\cdot 89 = 801\equiv 1\mod 100\\ $$

Now, knowing that $9^{10}\equiv 1\mod 100$, your remainging task should be easier.

5xum
  • 126,227
  • 6
  • 135
  • 211
2

HINT:

$$9^{2n}=(10-1)^{2n}=(1-10)^{2n}\equiv1-\binom{2n}110^1\pmod{100}\equiv1-20n$$

$\implies9^{2n}\equiv1\pmod{100}$ if $5|n$

Else $1-20n\equiv1+80n\pmod{100}$

2

$$\phi(100) = 40 \therefore 9^{1500} \equiv (9^{40})^{37}9^{20} \equiv 9^{20} \equiv \pm1, \pm51 \pmod{100}$$

as these all square to $1$ mod 100. To find which of the four is the right one: $$9^{1500} \equiv 81^{750} \equiv 1^{750}\equiv 1 \pmod{20} $$ So $01$.

wlad
  • 8,355
2

$$9^2\equiv -19\pmod{100}$$

$$\implies 9^4\equiv 361\pmod{100}$$

$$\implies9^4\equiv 61\pmod{100}$$

$$\implies9^8\equiv 3721\pmod{100}$$

$$\implies 9^8\equiv21\pmod{100}$$

$$\implies9^8.9^{2}\equiv(21.81)\pmod{100}$$

$$\implies9^{10}\equiv1701\pmod{100}$$

$$\implies9^{10}\equiv 01\pmod{100}$$

$$\implies9^{1500}\equiv 01\pmod{100}$$

Empty
  • 13,252
2

Since $\phi(100)=\phi(2^2\cdot5^2)=1\cdot2^1\cdot4\cdot5^1=40$ (where $\phi$ is Euler's Totient), we know that $$ x^{40}\equiv1\pmod{100} $$ Therefore, since $1500\equiv20\pmod{40}$ $$ 9^{1500}\equiv9^{20}\pmod{100} $$ and since $20=10100_\text{two}$, we can compute by squaring and multiplying $$ \begin{align} 9^2&\equiv81\\ 9^4&\equiv61\\ 9^5&\equiv49\\ 9^{10}&\equiv1\\ 9^{20}&\equiv1\pmod{100} \end{align} $$ Thus, the last two digits of $9^{1500}$ are '$01$'.

robjohn
  • 353,833
1

Hint $\ 9\equiv -1\pmod{\!10}\,\Rightarrow\,9^{\large 10}\equiv (-1)^{\large 10}\,\pmod{\!10^{\large 2}}\ $

since $\,\ \ a\,\equiv\ b\, \pmod{\!n}\ \Rightarrow\,\ a^{\large n}\,\equiv\ b^{\large n}\ \ \pmod{\!n^{\large 2}},\ $ [simple proof here]

Bill Dubuque
  • 282,220
0

Since $\phi(100)\ |\ 3000$, it follows that $9^{1500}=$$(3^2)^{1500}=3^{3000}\equiv 1(\text{mod}(100))$.

J.G.131
  • 1,098