Let $S$ be the subset of $M_2(\mathbb{R})$ consisting of all matrices of the form $\begin{pmatrix} a & a \\ b & b \end{pmatrix}$
The matrix $\begin{pmatrix} x & x \\ y & y \end{pmatrix}$ is right identity in $S$ if and only if $x+y=1$. Fine, I can see that.
But I cannot see why "If $x+y=1$ , then $\begin{pmatrix} x & x \\ y & y \end{pmatrix}$ is not a left identity in $S$".
I have tried that, if $\begin{pmatrix} x & x \\ y & y \end{pmatrix}$ is a left inverse then : $\begin{pmatrix} x & x \\ y & y \end{pmatrix}\begin{pmatrix} a & a \\ b & b \end{pmatrix}=\begin{pmatrix} x(a+b) & x(a+b) \\ y(a+b) & y(a+b) \end{pmatrix}=\begin{pmatrix} a & a \\ b & b \end{pmatrix}$ in which case we have $x(a+b)=a$ and $y(a+b)=b$. What can i do with $x+y=1$?