Let $R$ be an integral domain. Let $I$ and $J$ be non-zero ideals of $R$. Is this statement always true: $$R\oplus(I\cap J)\cong I\oplus J\ ?$$
I regarded the short exact sequence $0\to I\cap J\to I\oplus J\to I+J\to0$ with the maps $(\cdot,\;-\,\cdot)$ and $\mathrm{pr}_1+\mathrm{pr}_2$. It splits if $I+J$ is a principal ideal and $I\oplus J\cong (I+J)\oplus(I\cap J)\cong R\oplus(I\cap J)$. In general, however, this is not the case. I cannot find any counter-example, either.