What is the solution of this kind of exercise $A=\sin2a+\sin4a+\ldots+\sin10a$
I have already tried to multiply with $2\cos \frac a2$ to solve this.
What is the solution of this kind of exercise $A=\sin2a+\sin4a+\ldots+\sin10a$
I have already tried to multiply with $2\cos \frac a2$ to solve this.
Here is another way to obtain it.
You may write $$ \begin{align} \sum_{k=1}^{n} \sin (2ka)&=\Im\left( \sum_{k=1}^{n} e^{2ika}\right)\\\\ &=\Im\left( e^{2ia}\frac{e^{2ina}-1}{e^{2ia}-1}\right)\\\\ &=\Im\left( e^{2ia}\frac{e^{ina}\left(e^{ina}-e^{-ina}\right)}{e^{ia}\left(e^{ia}-e^{-ia}\right)}\right)\\\\ &=\Im\left( e^{2ia}\frac{e^{ina}\left(2i\sin(na)\right)}{e^{ia}\left(2i\sin(a)\right)}\right)\\\\ &=\Im\left( e^{i(n+1)a}\frac{\sin(na)}{\sin(a)}\right)\\\\ &=\Im\left( \left(\cos ((n+1)a)+i\sin ((n+1)a)\right)\frac{\sin(na)}{\sin(a)}\right)\\\\ &=\frac{\sin(na)}{\sin(a)}\sin ((n+1)a). \end{align} $$