It appears you have the inequality backwards. Also, all I find is an asymptotic result for the primorial numbers, in Hardy and Wright. Therefore, i am not entirely sure the inequality indicated by the computer run holds forever, maybe sometimes it goes the other way. Below is data for the first 25 primorials. I indicate the largest prime factor with lower case p, the primorial with upper case P.
Afterthought: maybe for all numbers $n \geq 2,$ primorial and otherwise, we get something like $\omega(n) < 2 \log n / \log \log n.$
Found it, there is an explicit reference in the comments: Effective Upper Bound for the Number of Prime Divisors
with the result by G. Robin. Comment by Gerry Myerson: Estimation de la fonction de Tchebychef θ sur le k-ieme nombre premier et grandes valeurs de la fonction ω(n) nombre de diviseurs premiers de n, Acta Arith 42 (1983) 367-389, MR0736719 (85j:11109).
omega p
1 2 log P / log log P -1.891194393528896 Primorial P 2
2 3 log P / log log P 3.072300009669941 Primorial P 6
3 5 log P / log log P 2.778466514782393 Primorial P 30
4 7 log P / log log P 3.189340693812293 Primorial P 210
5 11 log P / log log P 3.783498689132461 Primorial P 2310
6 13 log P / log log P 4.418974532899663 Primorial P 30030
7 17 log P / log log P 5.102354851231404 Primorial P 510510
8 19 log P / log log P 5.790972042777756 Primorial P 9699690
9 23 log P / log log P 6.50283030965765 Primorial P 223092870
10 29 log P / log log P 7.246259778056221
11 31 log P / log log P 7.985305729097139
12 37 log P / log log P 8.744643009669849
13 41 log P / log log P 9.50916568672571
14 43 log P / log log P 10.26873760689452
15 47 log P / log log P 11.03275458447593
16 53 log P / log log P 11.80791815799024
17 59 log P / log log P 12.59204609226844
18 61 log P / log log P 13.37154899993717
19 67 log P / log log P 14.15847947390451
20 71 log P / log log P 14.94653596430098
21 73 log P / log log P 15.73068925382913
22 79 log P / log log P 16.52071947436941
23 83 log P / log log P 17.31157778776554
24 89 log P / log log P 18.10720534877059
25 97 log P / log log P 18.9106523419625