Identity
Regard dense elements:
$$\overline{\mathcal{D}N^*}=\mathcal{H}:\quad\varphi\in\mathcal{D}N^*$$
A calculation gives:
$$ZZ^*\varphi=NQN^*\varphi=NN^*Q\varphi$$
The operator is closed:
$$Q\in\mathcal{B}(\mathcal{H}):\quad NN^*=\overline{NN^*}\implies NN^*Q=\overline{NN^*Q}$$
By closed graph theorem:
$$\mathcal{D}(NN^*Q)=\mathcal{H}\implies NN^*Q\in\mathcal{B}(\mathcal{H})$$
By uniform extension:
$$ZZ^*\restriction_{\mathcal{D}N^*}=NN^*Q\restriction_{\mathcal{D}N^*}\implies ZZ^*=NN^*Q$$
So on operator level:
$$R=1-NN^*Q=1-(1+NN^*)Q+Q=Q$$
And on operator level:
$$Z\sqrt{R}^{-1}=N\sqrt{Q}\sqrt{Q}^{-1}=N$$
Concluding identity.
Support
For the spectrum:
$$\|Z\|\leq1\implies r(Z)\leq1\implies\sigma(Z)\subseteq\overline{\mathbb{D}}\implies F(\overline{\mathbb{D}})=1$$
Define the function:
$$\eta\in\mathcal{B}(\overline{\mathbb{D}}):\quad\eta(\lambda):=1-|\lambda|^2$$
As it is bounded:
$$Z\in\mathcal{B}(\mathcal{H}):\quad\eta(Z)=1-Z^*Z=Q$$
So for the boundary:
$$\mathcal{N}\eta(Z)=\mathcal{N}Q=(0)\implies F(\mathbb{S})=F\{\eta=0\}=(0)$$
Concluding support.